References

Guryanova, E. N. (1975). Zh. Strukt. Khim. 16, 143-144.
Guryanova, E. N., Goldstein, I. P. \& Romm, I. P. (1975). In DonorAcceptor Bonds. New York: Wiley.
Guryanova, E. N. \& Romm, I. P. (1992). Khim. Phys. 11, 795-805.
Lyalina, N. N., Dargina, S. V., Sobolev, A. N., Buslayeva, T. M. \& Romm, I. P. (1993). Koord. Khim. 19, 57-63.
Romm, I. P., Buslayeva, T. M., Lyalina, N. N., Shifrina, R. R. \& Sinitsin, N. M. (1992). Koord. Khim. 18, 165-170.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stephenson, T. A., Morehouse, S. M., Powell, A. R., Heffer, J. R. \& Wilkinson, G. (1965). J. Chem. Soc. pp. 3632-3636.

Acta Cryst. (1996). C52, 2204-2206

Aqua[bis(salicylidene)ethylenediaminato](isobutyl)cobalt(III)

Hullan Chen, ${ }^{a}$ Deyan Han, ${ }^{a}$ Hong Yan, ${ }^{a}$ Wenxia TANG, ${ }^{a}$ Yao $_{\text {Aang }}{ }^{b}$ and Wenuuan Yang ${ }^{b}$
${ }^{a}$ Department of Chemistry and Coordination State Key Laboratory, Nanjing University, Nanjing 210008, People's Republic of China, and ${ }^{b}$ Centre of Material Analysis, Nanjing University, Nanjing 210008, People's Republic of China
(Received 24 February 1993; accepted 4 July 1996)

Abstract

The title B_{12} model compound, aqua $\left\{2,2^{\prime}\right.$-[1,2-ethane-diylbis(nitrilomethylidyne)]diphenolato- $\left.N, N^{\prime}, O, O^{\prime}\right\}$ (isobutyl) cobalt(III), $\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, has distorted octahedral stereochemistry around the $\mathrm{Co}^{\text {III }}$ ion. The equatorial salen ligand displays a 'stepped' conformation, which is the preferred conformation in penta- and hexacoordinate organocobalt-salen complexes. The axial $\mathrm{Co}-\mathrm{C}$ bond length is close to that of coenzyme B_{12} and in accordance with those of other B_{12} models, but the difference in the axial $\mathrm{Co}-\mathrm{O}$ bond length as well as the deviation from the ideal tetrahedral value of the $\mathrm{Co}-\mathrm{C}-\mathrm{C}$ angle are due to the trans influence of the axial isobutyl group, which has stronger σ-donor power.

Comment

The title compound, (1), was studied as a coenzyme B_{12} model compound (Halpern, 1982).

[^0]
(1) $R={ }^{i} \mathrm{Bu}, L=\mathrm{H}_{2} \mathrm{O}$

The X-ray analysis of (1) showed that the crystal consists of discrete molecules with distorted octahedral stereochemistry (Fig. 1). The salen ligand, coordinated to the $\mathrm{Co}^{\text {III }}$ ion via its two N and two O atoms, is in the equatorial plane, the atoms of which are coplanar to within $\pm 0.014 \AA$. One isobutyl group and one $\mathrm{H}_{2} \mathrm{O}$ molecule occupy the two axial positions. The $\mathrm{Co}^{\mathrm{III}}$ ion lies above the $\mathrm{N}_{2} \mathrm{O}_{2}$ mean plane by $0.078 \AA$, towards the isobutyl group. The isobutyl group is oriented with respect to the equatorial salen plane in such a way that it lies above and towards the plane through Ol, Nl, $\mathrm{Cl}, \mathrm{Cl} 2, \mathrm{Cl} 6$ and $\mathrm{Cl1}$. As a result, the $\mathrm{Ol}-\mathrm{Co}-$ C 5 and $\mathrm{N} 1-\mathrm{Co}-\mathrm{C} 5$ angles are slightly larger than the $\mathrm{O} 2-\mathrm{Co}-\mathrm{C} 5$ and $\mathrm{N} 2-\mathrm{Co}-\mathrm{C} 5$ angles. The $\mathrm{Co}($ salen $)$ unit is significantly distorted from planarity, with an asymmetric 'stepped' conformation ($\alpha \neq \gamma$), while the ethylenediamine bridge assumes an asymmetric halfchair conformation,

Fig. 1. A displacement ellipsoid (50% probability) plot of the title complex, with H atoms omitted for clarity.

The bond lengths between the $\mathrm{Co}^{\text {III }}$ ion and the salen ligand donor atoms are in agreement with the values found in other hexacoordinate organocobalt(III)-salen complexes. The bond lengths and angles of the equatorial salen ligand as well as the axial $\mathrm{C}-\mathrm{Co}-\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right)$
angles are also comparable with those previously reported (Calligaris, Minichelli, Nardin \& Randaccio, 1971). The $\mathrm{Co}-\mathrm{C}$ bond length is in the range reported for organocobalt B_{12} model compounds (1.9-2.0 \AA) and close to the value reported for 5^{\prime}-deoxyadenosylcobalamin [2.00 (1) Å; Savage, Lindley, Finney \& Timmins, 1987]. The axial Co-O bond length is a little longer than that in [$\left(\mathrm{CH}_{3} \mathrm{COCH}_{2}\right) \mathrm{Co}($ salen $\left.)\left(\mathrm{CH}_{3} \mathrm{OH}\right)\right]$ [2.202 (9) Å; Cesari, Neri, Perego, Perrotti \& Zazzetta, 1970]. This difference may be ascribed to the different trans influences of the axial substituents and is in accordance with the strong σ-donor power of the isobutyl group. On the other hand, the $\mathrm{Co}-\mathrm{O}$ bond in (1) is slightly shorter than that in $\left[\left(\mathrm{C}_{2} \mathrm{H}_{5}\right) \mathrm{Co} \text { (salen) }\right]_{2}$ [2.342 (9) A \AA, which has a weak secondary $\mathrm{Co}-\mathrm{O}$ coordination bridging the two halves of the dimer (Calligaris, Nardin \& Randaccio, 1972).

The axial $\mathrm{Co}-\mathrm{C}-\mathrm{C}$ angle in (1) is found to be $126.9(8)^{\circ}$, which is very close to the Co-C-C angle in B_{12} coenzyme ($R=5^{\prime}$-deoxyadenosyl in scheme above) [124.0 (5) ${ }^{\circ}$; Savage, Lindley, Finney \& Timmins, 1987]; they are both much larger than the expected value of 109.5°. Furthermore, a surprisingly large Co-C-C bond angle of $130(4)^{\circ}$ is also observed in an alkylcobaloxime compound with $R=\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$ (Randaccio, Bresiani-Pahor, Toscuno \& Marzilli, 1981). These are presumably a result of the steric interaction of the bulky R group with the equatorial moiety. Generally, steric and electronic effects have to be taken into account in order to explain the large distortion of the axial alkyl and equatorial ligands in Schiff base B_{12} models.

Experimental

The title complex was synthesized according to the method of Schrauzer, Sibert \& Windgassen (1968) and slowly crystallized as purple brick-shaped crystals from methanol/water solution.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{4} \mathrm{H}_{9}\right)\left(\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}\right)\right.$ - Mo $\mathrm{K} \alpha$ radiation
($\mathrm{H}_{2} \mathrm{O}$)]
$M_{r}=400.37$
Monoclinic
$P 2_{1}$
$a=11.378(2) \AA$
$b=7.124$ (1) \AA
$c=11.585$ (2) \AA
$\beta=101.7(8)^{\circ}$
$V=919$ (3) \AA^{3}
$Z=2$
$D_{x}=1.446 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection
Enraf-Nonius CAD-4
diffractometer
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10-12^{\circ}$
$\mu=0.946 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Oblong
$0.3 \times 0.2 \times 0.2 \mathrm{~mm}$
Dark red
$\omega-2 \theta$ scans
Absorption correction:
empirical via ψ scan
(North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.67, T_{\text {max }}=0.83$
1855 measured reflections
1673 independent reflections
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 13$
$k=0 \rightarrow 8$
$l=-13 \rightarrow 13$
3 standard reflections frequency: 60 min intensity decay: 10%

Refinement

Refinement on F
$R=0.053$
$w R=0.067$
$S=1.24$
1461 reflections
315 parameters
H -atom parameters not refined
$w=1 / \sigma^{2}(F)$
$(\Delta / \sigma)_{\text {max }}=0.15$
$\Delta \rho_{\text {max }}=0.221 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.073 \mathrm{e} \AA^{-3}$ Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	x	y	z	$B_{\text {eq }}$
Co	0.63986 (9)	0. 128	0.16942 (9)	2.39 (2)
Ol	0.6880 (5)	0.318(1)	0.0744 (5)	3.2 (1)
O2	0.5112 (5)	0.291 (1)	0.1876 (5)	2.9 (1)
O3	0.5225 (6)	0.021 (1)	0.0059 (6)	3.3 (1)
N1	0.7539 (7)	-0.043 (1)	0.1408 (6)	2.8 (2)
N2	0.5871 (7)	-0.066 (1)	0.2533 (7)	2.8 (2)
Cl	0.8163 (9)	-0.036 (2)	0.0586 (8)	3.2 (2)
C2	0.5077 (8)	-0.058 (2)	0.3216 (8)	3.3 (2)
C3	0.633 (1)	-0.251 (2)	0.231 (1)	4.1 (2)
C4	0.762 (1)	-0.218(2)	0.211 (1)	4.1 (2)
C5	0.7373 (8)	0.240 (2)	0.3156 (8)	3.6 (2)
C6	0.868 (1)	0.209 (2)	0.364 (1)	4.0 (2)
C11	0.7580 (8)	0.295 (2)	-0.0020 (8)	3.0 (2)
C12	0.8220 (7)	0.130 (3)	-0.0133 (7)	3.7 (2)
C13	0.8931 (7)	0.125 (3)	-0.1009 (7)	4.6 (2)
C14	0.8987 (9)	0.270 (2)	-0.1738 (8)	5.0 (3)
C15	0.838 (1)	0.425 (2)	-0.1646 (9)	4.6 (3)
C16	0.7669 (9)	0.449 (2)	-0.079 (1)	4.6 (3)
C21	0.4470 (7)	0.272 (1)	0.2714 (7)	2.6 (2)
C22	0.4455 (7)	0.109 (1)	0.3388 (7)	2.8 (2)
C23	0.3712 (8)	0.115 (3)	0.4233 (8)	4.6 (2)
C24	0.3029 (9)	0.261 (2)	0.4395 (9)	5.4 (3)
C25	0.303 (1)	0.418 (2)	0.370 (1)	5.0 (3)
C26	0.3728 (9)	0.429 (2)	0.2869 (9)	3.9 (2)
C61	0.907 (1)	0.281 (3)	0.482 (1)	6.0 (3)
C62	0.946 (1)	0.301 (3)	0.286 (1)	6.4 (4)

Table 2. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

$\mathrm{Co}-\mathrm{N} 1$	$1.861(8)$	$\mathrm{Co}-\mathrm{N} 2$	$1.859(8)$
$\mathrm{Co}-\mathrm{O} 1$	$1.892(7)$	$\mathrm{Co}-\mathrm{O} 2$	$1.911(6)$
$\mathrm{Co}-\mathrm{C} 5$	$1.991(9)$	$\mathrm{Co}-\mathrm{O} 3$	$2.218(6)$
$\mathrm{Ol}-\mathrm{Cl1}$	$1.316(12)$	$\mathrm{O} 2-\mathrm{C} 21$	$1.335(11)$
$\mathrm{N} 1-\mathrm{Cl}$	$1.301(13)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.319(13)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.476(14)$	$\mathrm{N} 2-\mathrm{C} 3$	$1.464(14)$
$\mathrm{Cl}-\mathrm{C} 12$	$1.45(2)$	$\mathrm{C} 2-\mathrm{C} 22$	$1.419(15)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.55(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.500(14)$
$\mathrm{Ol}-\mathrm{Co}-\mathrm{N} 1$	$94.0(3)$	$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2$	$87.3(3)$
$\mathrm{Ol}-\mathrm{Co}-\mathrm{N} 2$	$176.0(3)$	$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 3$	$86.8(3)$
$\mathrm{Ol}-\mathrm{Co}-\mathrm{C} 5$	$91.9(4)$	$\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 1$	$174.2(3)$

$\mathrm{O} 2-\mathrm{Co}-\mathrm{N} 2$	$93.2(3)$	$\mathrm{O} 2-\mathrm{Co}-\mathrm{O} 3$	$87.8(3)$
$\mathrm{O} 2-\mathrm{Co}-\mathrm{C} 5$	$88.3(4)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{N} 1$	$86.6(3)$
$\mathrm{O} 3-\mathrm{Co}-\mathrm{C} 5$	$175.9(4)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{N} 2$	$89.3(3)$
$\mathrm{N} 1-\mathrm{Co}-\mathrm{C} 5$	$97.3(4)$	$\mathrm{N} 1-\mathrm{Co}-\mathrm{N} 2$	$85.2(4)$
$\mathrm{N} 2-\mathrm{Co}-\mathrm{C} 5$	$92.1(4)$	$\mathrm{Co}-\mathrm{O} 1-\mathrm{Cl1}$	$126.2(7)$
$\mathrm{Co}-\mathrm{O} 2-\mathrm{C} 21$	$124.5(6)$	$\mathrm{Co}-\mathrm{N} 1-\mathrm{Cl}$	$127.5(7)$
$\mathrm{Co}-\mathrm{N} 1-\mathrm{C} 4$	$115.1(7)$	$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 2$	$128.0(7)$
$\mathrm{Co}-\mathrm{N} 2-\mathrm{C} 3$	$114.3(7)$	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 3$	$117.5(9)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 12$	$123(1)$	$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 22$	$123(1)$
$\mathrm{N} 2-\mathrm{C} 3-\mathrm{C} 4$	$105.9(9)$	$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$104.9(8)$
$\mathrm{Co}-\mathrm{C} 5-\mathrm{C} 6$	$126.9(8)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 61$	$113(1)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 62$	$111.0(9)$	$\mathrm{C} 61-\mathrm{C} 6-\mathrm{C} 62$	$108(1)$

Intensity data were corrected for Lorentz and polarization effects, and corrected empirically for absorption. The Co atom was found by direct methods. Several cycles of difference Fourier syntheses revealed all the non-H atoms. Full-matrix least-squares refinement was performed with anisotropic displacement parameters for all non- H atoms. All H atoms were located in a difference Fourier map or calculated theoretically, except for the water H atoms. All calculations were performed on a PDP11/44 computer using the SDP-Plus (Frenz, 1985) program package.

This research was supported by grants from the Natural Science Foundation of China and the Foundation of the Centre of Material Analysis of Nanjing University.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: HU1052). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Calligaris, M., Minichelli, D., Nardin, G. \& Randaccio, L. (1971). J. Chem. Soc. A, pp. 2720-2724.
Calligaris, M., Nardin, G. \& Randaccio, L. (1972). Coord. Chem. Rev. 7, 385-403.
Cesari, M., Neri, C., Perego, G., Perrotti, E. \& Zazzetta, A. (1970). Chem. Commun. pp. 276-277.
Frenz, B. A. (1985). Enraf-Nonius SDP-Plus Structure Determination Package. Version 3.0. Enraf-Nonius, Delft, The Netherlands.
Halpern, J. (1982). B 12 . Vol. 1, edited by D. Dolphin, pp. 501-541. New York: Wiley.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Randaccio, L., Bresiani-Pahor, N., Toscuno, P. J. \& Marzilli, L. G. (1981). J. Am. Chem. Soc. 103, 6347-6351.

Savage, H. F. J., Lindley, P. F., Finney, J. L. \& Timmins, P. A. (1987). Acta Cryst. B43, 280-295.
Schrauzer, G. N., Sibert, J. W. \& Windgassen, R. J. (1968). J. Am. Chem. Soc. 90, 6681-6688.

[^0]: © 1996 International Union of Crystallography
 Printed in Great Britain - all rights reserved

